Excerpt from "jQuery, jQuery Ul, and jQuery Mobile: Recipes and
Examples" by Adriaan de Jonge and Phil Dutson

(Addison-Wesley Professional, 2012)

Getting Started with jQuery

The motto of jQuery is write less, do more. And by using the jQuery library, you can get
started doing exactly that with nothing more than your favorite text editor.

This chapter starts with a hello world—like recipe to cover the basics, it discusses the
fundamentals of the $ function and how to prevent conflicts with other libraries.

To ensure that your own code is just as concise as that of jQuery, the library offers a
set of helper functions. This chapter covers the most important functions, which are
designed to help you to eliminate useless boilerplate code or perform common tasks
efficiently. You will see many of these functions being used in the following chapters.

Recipe: Introducing the Basic Usage of jQuery

jQuery helps you to clearly separate HTML and JavaScript. Instead of mixing the HTML
with a large number of onclick attributes, jQuery selects all the elements that need to
respond to a click event and binds a handler function. Listing 1.1 covers the basics of
accessing HTML elements from JavaScript code and binding event handlers.

Listing 1.1 Introducing the Basic Usage of jQuery

00 <!DOCTYPE html>

01

02 <html lang="en">

03 <head>

04 <title>Introduction</title>
05 <style>

06 /*

07 CSS Style sheets are only inline to keep the
08 code examples together for readability. When
09 using this code in production, please

10 externalize all style sheets.

11 */

12 .myclass {
13 background-color: black;

(Continues)

Chapter 1 Getting Started with jQuery

Listing 1.1 Introducing the Basic Usage of jQuery (Continued)

14 color: white;
15 }
16 </style>
17 </head>
18 <body>
19
20 <hl>Introduction</hl>
21
22 <p>The HTML in the examples is kept as simple as
23 possible.</p>
24
25 <p class="myclass">This is a placeholder for content</p>
26
27 <p id="myid">You can click on this paragraph</p>
28
29 <script src="http://code.jquery.com/jquery-1.7.2.min.js"></script>
30
31 <script>
32 // JavaScripts are only inline to keep the code
33 // examples together for readability. When using
34 // this code in production, please externalize
35 // all JavaScript code.
36
37 $(document) .ready (function() {
38
39 S('p').css('font-weight', 'bold');
40
41 $('.myclass') .html ('Different content');
42
43 $('#myid') .click(function() {
44 alert ('Hello world!');
45 3
46
47 });
48 </script>
49 </body>
50 </html>
Caution

As a rule, you should avoid having any CSS and JavaScript within the HTML. This book
breaks that rule for the sake of readability, in an effort to keep all the code of one example
together. However, normally you should put your scripts in external JavaScript files and refer
to them in the same way as line 29 refers to the jQuery library.

Recipe: Introducing the Basic Usage of jQuery

Except for the script element, the HTML is clean from JavaScript. The HTML
contains a few pointers that make the elements easier to find for jQuery. These are the
class and the id.

jQuery can be loaded from a Content Delivery Network (CDN) and included
so as to always point to the latest version of jQuery. This can be done by loading the
script from http://code.jquery.com/jquery-latest.min.js. You can find a list of CDN
providers at http://docs.jquery.com/Downloading_jQuery. By always including
the latest version of jQuery, you ensure that your site upgrades to the latest versions of
jQuery automatically. For minor versions, this is advantageous because bugs and
security risks are quickly eliminated. For major upgrades, you should ensure that you
remove calls to deprecated APIs before a new version removes them. Some developers
prefer to defer upgrading to new major versions of software until a first bug fix update is
released.

Notice that scripts are loaded at the bottom of the page. This allows the browser to
render all HTML before loading the script elements. The scripts would still work if they
were placed on top of the page; however, the perceived loading time would be longer.
This is generally due to request blocking, wherein the browser is unable to fetch more
than a few files at a time, and thus it will actually stop page rendering until the download
of the requested files is complete.

Even though the code is positioned at the bottom of the page, it is a good practice to
bind the basic JavaScript calls to the ready event of the document, as you can see in line
37.This way, you can ensure that the page is done rendering before executing the code.

The Introduction stated that jQuery is used to separate HTML and JavaScript in a
friendly way. Without jQuery, it would take more code to achieve the same result.
HTML that is free of JavaScript also loads faster. If the HTML contains many onclick
attributes, each time the browser reads an onclick, it will pause rendering and
interpret the JavaScript. If your web application grows, rendering all of the HTML at
once—without interruption and binding the events later—is faster.

The HTML adopts some parts of HTML5 but does not yet use all of the new
element names to avoid compatibility problems on older browsers. For that same reason,
this book uses HTML rather than XHTML.

Line 39 works on all paragraph elements in the document and changes a CSS
property. Changing CSS properties this way is not recommended. This book uses the
css () function mostly to indicate which elements are selected. Line 41 selects a
paragraph of class myclass and changes its HTML by means of the .html () function.
This allows you to either get or change the contents of the selector. Finally, line 43
selects a paragraph with id myid and binds a click handler that displays an alert box with
Hello World.

The selectors in lines 39, 41, and 43 are CSS selectors. jQuery supports the majority
of CSS3 selectors and adds its own extensions. The simpler and more standard the
selections are, the faster they can perform. Selectors are covered in greater detail in
Chapter 2, “Selecting Elements.”

Chapter 1 Getting Started with jQuery

Recipe: Using jQuery with Other Libraries

jQuery’s use of the $ function name might seem odd if you are used to other programming
languages. In many languages, $ is reserved and cannot be used as a variable name on its
own. As a result, it seems like the $ is part of a language rather than a library.

JavaScript allows $ as a variable name or as a function name, or as a variable name that
points to a function, or to an object. As a result, many JavaScript libraries use the $ as a
shorthand notation for important functions.

jQuery uses the $ as an alias for jouery. This means that you can use the longer
variable name jQuery when you call jQuery functions. Listing 1.2 demonstrates how
jQuery helps you to avoid naming clashes with other libraries.

Listing 1.2 Assigning the $ to a Different Function

00 <!DOCTYPE html>

01

02 <html lang="en">

03 <head>

04 <title>$.noConflict()</title>

05 </head>

06 <body>

07

08 <p>This example shows how to mix jQuery with non-jQuery code
09 that uses the $ as a function name. Click on this paragraph
10 to test it.</p>

11

12 <script src="http://code.jquery.com/jquery-1.7.2.min.js"></script>
13

14 <script>

15 // please externalize this code to an external .js file

16 $(document) .ready (function() {

17

18 $.noConflict();

19

20 $ = function(name) {

21 alert('Hello, ' + name);

22 }i

23

24 var clickHandler = function() {
25 $('Reader') ;

26 }i

27

28 (function(s) {

29 $('p').click(clickHandler) ;

30 }) (3Query) ;

Recipe: Determining the jQuery Version

Listing 1.2 Assigning the $ to a Different Function (Continued)

31

32 1)

33 </script>
34 </body>
33 </html>

After line 18, the $ is no longer bound to jQuery and can be used for different
purposes again. Lines 20-26 show how you can use the $ for your own functions if you
insist. It might as well be a different library that uses the $, instead.

Even after calling noConflict, there is a clean way to access jQuery code with the $
without naming clashes. Lines 28-30 demonstrate how to pass the jQuery object to a
function, ensuring that the $ only is in scope inside that function. This function is
executed directly after it is loaded.

Recipe: Determining the jQuery Version

You can ask jQuery to return its current version. This could be useful when you are
upgrading and have multiple versions of jQuery running at the same time, and you want
to ensure that you are working with the correct version. Listing 1.3 shows a different use
of the jquery property. In case you are in doubt as to whether you are dealing with a
jQuery object or a different kind of object, you can use the jquery property to help you
to determine this.

Listing 1.3 Testing Whether an Object is a jQuery Object

00 <!DOCTYPE html>

01

02 <html lang="en">

03 <head>

04 <title>jQuery Version</title>

05 </head>

06 <body>

07

08 <p>The jQuery version is: </p>
09

10

11 <script src="http://code.jquery.com/jquery-1.7.2.min.js"></script>
12

13 <script>

14 // please externalize this code to an external .js file
15 $(document) .ready (function() {

(Continues)

Chapter 1 Getting Started with jQuery

Listing 1.3 Testing Whether an Object is a jQuery Object (Continued)

16

17 var a = {b: 1, c: 2};

18 var b = $('#placeholder');
19 var jqVersion = $.fn.jquery;
20

21 if(a.jquery) {

22 a.html (jgVersion + (' (a)'));
23 }

24

25 if (b.jquery) {

26 b.html (jgVersion + (' (b)"'));
27 }

28

29 });

30 </script>

31 </body>

32 </html>

The a variable on line 17 is clearly not a jQuery object; the b variable on line 18
clearly is one. Line 19 retrieves the jQuery version, regardless of any variable. The code
will never execute line 22. Instead, line 26 displays the jQuery version and confirms that
b is a jQuery object, as expected.

Recipe: Iterating Arrays with each()

One of the reasons why you can do more with less code with jQuery is because
JavaScript can be used as a functional language. Listing 1.4 demonstrates how you can use
the each () function instead of creating a for loop.

Listing 1.4 Numbering Each Value in a List

00 <!DOCTYPE html>

01

02 <html lang="en">

03 <head>

04 <title>The each() function</title>

05 </head>

06 <body>

07

08 <h2>This example demonstrates the each() function by
09 prepending a letter before each paragraph below</h2>
10

11 <p>First</p>

12 <p>Second</p>

13 <p>Third</p>

Recipe: Manipulating Arrays by Using map()

Listing 1.4 Numbering Each Value in a List (Continued)

14

15 <script src="http://code.jquery.com/jquery-1.7.2.min.js"></script>
16

17 <script>

18 // please externalize this code to an external .js file
19 $(document) .ready (function() {

20

21 var values = ['a', 'b', 'c', 'd'];

22

23 $.each(values, function(index, value) {
24 values[index] = value.toUpperCase() ;
25 1)

26

27 $S('p').each(function(index, el) {

28 S(el).prepend(' - ');

29 1)

30

31 $('p').each(function(index) {

32 $(this) .prepend(values[index]) ;

33 1)

34

35 1)

36 </script>

37 </body>

38 </html>

On lines 21-25, the each () function is used to iterate over a regular array. It calls a
function that changes all characters within the array to uppercase.

Lines 27-29 use the each () function to iterate over a set of elements selected by
jQuery. Keep in mind that jQuery offers many shorthand notations for its own functions
that work without the each function. It is preferable to avoid each () when jQuery
provides a better method.

For readability, you might prefer each () over a for loop. For performance, a for
loop might be faster in some cases. This is a matter of preference. This book favors
each () over for loops.

Recipe: Manipulating Arrays by Using map()
Although each () seems cleaner than a for loop, there is a cleaner way to manipulate
arrays. Listing 1.5 illustrates how to use map () for a similar purpose as Listing 1.4. As it
turns out, each () is more appropriate for making function calls based on array elements.
The map () function is specifically meant to change array elements by processing them
into a new array. In map (), the variable assignment is replaced by a simple return.

Chapter 1 Getting Started with jQuery

Listing 1.5 Modifying All Elements in an Array

00 <!DOCTYPE html>

01

02 <html lang="en">

03 <head>

04 <title>The map() function</title>

05 </head>

06 <body>

07

08 <h2>This example shows the basic usage of a map.</h2>
09

10 <p id="before">Before map(): </p>

11

12 <p id="after">After map(): </p>

13

14 <script src="http://code.jquery.com/jquery-1.7.2.min.js"></script>
15 <script>

16 // please externalize this code to an external .js file

17

18 $(document) .ready (function() {

19

20 var arr = [1, 2, 3, 4, 5];

21

22 $('#before') .append (JSON.stringify (arr));
23

24 arr = $.map(arr, function(value, index) {
25 return 'done something with ' + value;
26 1)

27

28 $('#after') .append(JSON.stringify(arr));
29

30 });

31 </script>

32 </body>

33 </html>

The change that line 25 makes to the array elements might not be useful in practice;
however, it shows that you can easily change an array of integers into an array of strings.
JavaScript is weakly typed, after all.

Recipe: Working with Arrays of Elements

So far, you have seen arrays of integers, arrays of strings, and jQuery objects implicitly
containing a list of HTML elements. Listing 1.6 displays how you can access the HTML
elements within the jQuery object and transform the list into a regular jQuery-free array.

Recipe: Working with Arrays of Elements

Listing 1.6 Retrieving Arrays and Elements in Multiple Ways

00 <!DOCTYPE html>

01

02 <html lang="en">

03 <head>

04 <title>The get() function and alternatives</title>
05 </head>

06 <body>

07

08 <h2>Various ways to get an array or a specific element</h2>
09

10 <p>First</p>

11 <p>Second</p>

12 <p>Third</p>

13

14 <button id="get">Get</button>

15 <button id="to-array">To array</button>

16 <button id="make-array">Make array</button>

17 <button id="first">First</button>

18 <button id="get-first">Get first</button>

19 <button id="get-last">Get last</button>

20

21 <script src="http://code.jquery.com/jquery-1.7.2.min.js"></script>
22

23 <script>

24 // please externalize this code to an external .js file
25 $(document) .ready (function() {

26

27 // same as next

28 $('#get').click(function() {

29 alert('Get p = ' + $S('p').get());

30 });

31

32 // same as previous, better readability

33 S ('#to-array') .click(function() {

34 alert('Get p = ' + $('p').toArray());

35)i

36

37 // yet another alternative with the same functionality
38 S ('#make-array') .click(function() {

39 alert('Get p = ' + S.makeArray($('p')));

40 1)

41

42 // same as next

43 S('#first').click(function() {

(Continues)

11

12

Chapter 1 Getting Started with jQuery

Listing 1.6 Retrieving Arrays and Elements in Multiple Ways (Continued)

44 alert ('First p = ' + $('p')[0].innerHTML) ;

45 3

46 // same as previous

47 S('#get-first').click(function() {

48 alert('Get first p = ' + $('p').get(0).innerHTML) ;
49 })

50

51 // ease of use: get the last element

52 $('#get-last').click(function() {

53 alert('Get last p = ' + $('p').get(-1).innerHTML) ;
54 })

55

56 });

57 </script>

58 </body>

59 </html>

Lines 29, 34, and 39 perform the same function: transform a jQuery object containing
a selection into an array of HTML elements. The get () method works well but is not
the most readable one for this purpose. The getArray () and makeArray () functions
are mostly different in the way they are called and can both be used, depending on
preference.

Using get () to obtain specific elements from the current selection is similar to
accessing the jQuery object by using brackets []. One advantage is the possibility to get
the last element by asking for position -1.

Recipe: Getting the Position of an Element by
Using index()
The last recipe showed how to convert jQuery selections into arrays of regular HTML

elements. All HTML elements have a position, not only within the jQuery selection, but
in the complete HTML document. Listing 1.7 displays how to ascertain this position.

Listing 1.7 Determining the Index of Paragraphs

00 <!DOCTYPE html>

01

02 <html lang="en">

03 <head>

04 <title>The index() function</title>
05 </head>

06 <body>

07

Recipe: Finding Elements in an Array by Using grep() 13

Listing 1.7 Determining the Index of Paragraphs (Continued)

08 <hl>Click on the paragraphs to see their index</hl>

09

10 <p>First</p>

11 Not a paragraph so it does not respond to your clicks
12 <p>Second</p>

13 <p>Third</p>

14 <p>Some nested paragraphs:

15 <p>Nested 1</p>

16 <p>Nested 2</p>

17 </p>

18 <p>And a final non-nested paragraph</p>

19

20 <script src="http://code.jquery.com/jquery-1.7.2.min.js"></script>
21

22 <script>

23 // please externalize this code to an external .js file
24 $ (document) .ready (function() {

25

26 $('p').click(function() {

27 alert ('Index of clicked item is: ' + $(this).index())
28 1)

29

30 });

31 </script>

32 </body>

33 </html>

By selecting only paragraph elements from a document that mixes multiple element
types, it becomes apparent that the returned value of the index () function is
independent of the jQuery selection.

Recipe: Finding Elements in an Array
by Using grep()

To find an element inside an array, you can use a grep () function (like the Unix command
to find text in files), which shares similarities with map () and each (). Listing 1.8 shows
how to use grep () to select the months that have the character “r” in their name.

Listing 1.8 Selecting the Months in a Year That Have an “r” in Their Name

00 <!DOCTYPE html>
01

02 <html lang="en">
03 <head>

(Continues)

14

Chapter 1 Getting Started with jQuery

Listing 1.8 Selecting the Months in a Year That Have an “r” in Their Name (Continued)

04 <title>The grep() function</title>

05 </head>

06 <body>

07

08 <h2>Al1l months</h2>

09 <p id="all-months"></p>

10

11 <h2>Months when you should take extra vitamin</h2>

12 <p id="vitamin"></p>

13 <script src="http://code.jquery.com/jquery-1.7.2.min.js"></script>
14

15 <script>

16 // please externalize this code to an external .js file
17 $(document) .ready (function() {

18

19 var arr = ['January', 'February', 'March', 'April', 'May',
20 'June', 'July', 'August', 'September', 'October',

21 'November', 'December'];

22

23 var rInMonth = $.grep(arr, function(value, index) {

24 return value.indexOf('r') >= 0;

25 3

26

27 $('#all-months') .html (arr.join('
 '))
28 $('#vitamin') .html (rInMonth.join('
 '
29

30 });

31 </script>

32 </body>

33 </html>

)):

Where each () is useful for calling other functions for each array element and map ()
is useful for changing all values in an array, grep () is useful for selecting a subset of an
array. All function calls expect either true or false, depending on whether the current
element should be in the result set.

Recipe: Determining the Size of an Element Set
by Using length()
In case you need to know how many items are selected by jQuery, the length ()

function comes in handy. Also note that it will return the same value as the size()
function. Listing 1.9 shows how to use this function.

Recipe: Retrieving HTML5 data- Attributes

Listing 1.9 Determining the Number of Paragraphs

00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
217
28
29
30
31

<!DOCTYPE html>

<html lang="en">

<head>
<title>The length() function</title>
</head>
<body>
<h2>By clicking on the button below, you can see

the length of the selected element set.</p>
<p>First</p>
<p>Second</p>
<p>Third</p>
<button id="get-length">Get length</button>

<script src="http://code.jquery.com/jquery-1.7.2.min.js"></script>

<script>
// please externalize this code to an external .js file
S (document) .ready (function() {

// same as next
$('#get-length') .click(function() {
alert('Length = ' + $('p').length);

1)

1)

</script>

</body>

</html>

The use of length () is straightforward. Line 25 returns the number of paragraph

elements selected.

Recipe: Retrieving HTML5 data- Attributes

With HTML5, you can add your own attributes to HTML elements when they start
with data-.This can be useful for web applications that need to transfer many small

pieces of data connected to the DOM tree that should remain hidden to the web site
visitor. Listing 1.10 demonstrates how jQuery helps you to read the contents of these

data- attributes.

15

16

Chapter 1 Getting Started with jQuery

Listing 1.10 Reading Hidden Text from data-myattribute

00 <!DOCTYPE html>

01

02 <html lang="en">

03 <head>

04 <title>Using data() for HTML5 data- attributes</title>
05 </head>

06 <body>

07

08 <p data-myattribute="just some random content"

09 id="test-data">If you press the button, you can reveal
10 the text hidden as an attribute inside the paragraph

11 element as an HTML5 data attribute.</p>

12

13 <button>Get data attribute</button>

14

15 <script src="http://code.jquery.com/jquery-1.7.2.min.js"></script>
16

17 <script>

18 // please externalize this code to an external .js file
19 $(document) .ready (function() {

20

21 S('button') .click (function() {

22 alert ('The data is: ' + $('#test-data').data('myattribute'));
23)

24

25 });

26 </script>

27 </body>

28 </html>

If your attribute is called data-myattribute, you can fetch the data with the
data () function, specifying myattribute as an argument. In this case, you can consider
data () as a convenience function. The data () function has more uses as you can see in
the next recipe.

Recipe: Storing Element Data by Using data()

Manipulating the HTML document is relatively slow. Some web applications abuse the
HTML document to store hidden data that is associated with specific HTML elements.
An application might use attributes like data-myattribute to achieve that.
Previously, storing data inside the HTML document was considered a bad practice.
This was due to web developers haphazardly jamming in custom elements that would
cause validation errors and could cause potential problems with the page rendering.
HTMLS5 has added support for data-* attributes and jQuery provides a means in the

Recipe: Storing Element Data by Using data()

form of the data () function to use the data stored in them. In the last recipe, you saw
how this function helps you fetch data- attributes. That is not the main function. Listing
1.11 demonstrates how to use data () to store element specific data in a central storage,
outside the document.

Listing 1.11 Storing Element Data without Affecting Other Elements

00 <!DOCTYPE html>

01

02 <html lang="en">

03 <head>

04 <title>The data() function: storing</title>

05 </head>

06 <body>

07

08 <button id="store">Store some data in the paragraph
09 below</button>

10

11 <button id="show-data">Show the data in the paragraph
12 below</button>

13

14 <p id="store-data">Even if you look in Firebug, you

15 cannot see any data that is stored related to this

16 element after storing it.</p>

17

18 <button id="show-empty">Show that the next paragraph

19 does not contain the data</button>

20

21 <p id="empty-data">To show you that the data belongs

22 to the other paragraph, this paragraph is intentionally
23 left without any data.</p>

24

25 <script src="http://code.jquery.com/jquery-latest.min.js"></script>
26

27 <script>

28 // please externalize this code to an external .js file
29 $(document) .ready (function() {

30

31

32 $('#store') .click(function() {

33 $('#store-data') .data('myattribute', 'some data');
34)

35

36 S ('#show-data') .click(function() {

37 alert ('The data is: ' + $('#store-data').data('myattribute'));
38 1)

(Continues)

17

18

Chapter 1 Getting Started with jQuery

Listing 1.11 Storing Element Data without Affecting Other Elements (Continued)

39

40 $ ('#show-empty') .click (function() {

41 alert('The data is: ' + $('#empty-data').data('myattribute'));
42 3

43 });

44 </script>

45 </body>

46 </html>

Open the example in your browser and use developer tools to see what happens with
the generated HTML tree; or better, what does not happen to it. The data is stored
outside the document. Nevertheless, the data is still associated with specific elements.

Recipe: Removing Element Data by Using
removeData()

If your application processes a lot of data, it is wise to think about memory usage. When
you no longer need data associated with certain elements, you should remove it. Listing
1.12 shows the use of removeData () for this purpose.

Listing 1.12 Demonstrating Data Removal and the Storage of Objects

00 <!DOCTYPE html>

01

02 <html lang="en">

03 <head>

04 <title>The data() function: removing</title>

05 </head>

06 <body>

07

08 <button id="store-data">Store data</button>

09

10 <button id="show-data">Show the data</button>

11

12 <button id="remove-data">Remove the data</button>

13

14 <p id="store-data">This paragraph element is the placeholder
15 for the data to be stored. Showing the data will reveal
16 a little bit of the jQuery internals for storing data.
17 You can ignore the technical details.</p>

18

19

20 <script src="http://code.jquery.com/jquery-1.7.2.min.js"></script>
21

Recipe: Testing and Manipulating Variables

Listing 1.12 Demonstrating Data Removal and the Storage of Objects (Continued)

22 <script>
23 // please externalize this code to an external .js file
24 $(document) .ready (function() {

25

26

27 $('#store-data') .click(function() {

28 $('#store-data') .data('myattribute’,
29 {a: 'first', b: 'second'});

30 1)

31

32 S ('#show-data') .click(function() {

33 alert ('The data is: ' +

34 JSON.stringify ($('#store-data').data()));
35)

36

37 S ('#remove-data') .click(function() {
38 S ('#store-data') .removeData() ;

39 1)

40 });

41 </script>

42 </body>

43 </html>

Line 28 shows the data () function being used to store data. Line 29 shows the data
that will be saved. This data is in JavaScript Object Notation (JSON) format. Using
JSON, you can store data in key-value pairs. You can learn more about JSON by visiting
www.json.org/. Line 38 removes all data associated to the button with id show-data. If
you only want to remove myattribute, you can pass this as an argument to the
removeData () function.This code example contains more than just the removeData ().
Line 29 and 34 demonstrate that you can store complete objects by using the data ()
function and remove them with one call.

Recipe: Testing and Manipulating Variables

JavaScript is a weakly typed language. This means you can never be 100 percent sure
what kind of data is stored in variables, especially not if multiple developers are involved
or when multiple libraries are manipulating data.

Listing 1.13 demonstrates jQuery’s helper functions for testing data types.

Listing 1.13 Showing Variable Types and Modifying Arrays

00 <!DOCTYPE html>
01
02 <html lang="en">

(Continues)

19

20

Chapter 1 Getting Started with jQuery

Listing 1.13 Showing Variable Types and Modifying Arrays (Continued)

03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

<head>

<title>Various variable testing functions</title>
</head>
<body>

<p>This is a list of variable type tests, followed by
a few modification functions:</p>
<p id="placeholder"></p>

<script src="http://code.jquery.com/jquery-1.7.2.min.js"></script>

<script>
// please externalize this code to an external .js file
$ (document) .ready (function() {

var testObj = {},
testvVar = 1,
testFun = function() {},
testArr = [1, 2, 2];

var results = [];

results.push('testObj = '

7

JSON.stringify(testObj));
JSON.stringify (testVar));
JSON.stringify (testFun)) ;
JSON.stringify (testArr))

results.push('testvVar = '

+ o+ o+ o+

(

(
results.push('testFun = '

(

7

results.push('testArr = '

results.push('
");

results.push('type(testObj) = ' + $.type(testObj));
results.push('type(testVar) = ' + $.type(testVar));
results.push('type(testFun) = ' + $.type(testFun));
results.push('type(testArr) = ' + S$.type(testArr));

results.push('
");

results.push('inArray (3, testArr) = '
+ S$.inArray (3, testArr));

results.push('isArray (testArr) = '
+ $.isArray (testArr));

results.push('isEmptyObject (testObj) = '
+ $.isEmptyObject (testObj));

Recipe: Testing and Manipulating Variables

Listing 1.13 Showing Variable Types and Modifying Arrays (Continued)

48 results.push('isPlainObject (testObj) = '

49 + $.isPlainObject (test0Obj));
50

51 results.push('isFunction(testFun) = '

52 + $.isFunction(testFun));

53

54 results.push('
");

55

56 results.push('merge(testArr, [3, 3, 4]) ="
57 + $.merge(testArr, [3, 3, 41));
58

59 results.push('unique (testArr) = '

60 + $.unique(testArr));

61

62 results.push('merge(testArr, [5, 6]) ="'

63 + $.merge(testArr, [5, 6]));
64

65 S ('#placeholder') .append(results.join('
"));
66

67 });

68 </script>

69 </body>

70 </html>

Although this code won’t win any beauty contests, it demonstrates many difterent
functions that are available for testing data types. Lines 32—35 show how the type ()
function of jQuery works. This function checks for the existence of an internal JavaScript
[[Class]]. When type () finds one, it displays it. The main difterence between the jQuery
type () and the standard JavaScript typeof () function is in the return. The typeof ()
function returns an “object,” whereas the type () returns an “array”.

Lines 39—43 deal with array handling. The inArray () function searches through an
array for a specific value and returns either the index of the value in the array or a -1.
The isArray () function performs what it is name suggests; it checks to see if the object
it is testing is an array.

Lines 45-52 demonstrate the use of object detection. The isEmptyObject ()
function checks an object for the presence of a value or data content, whereas the
isPlainObject () is used to determine if the object being tested was created with
either {} or new Object. Lines 51 and 52 show the use of the isFunction/()
function, which as you can probably surmise checks the argument passed to see if it is a
function object. Something to keep in mind when using isFunction() is that the
official jQuery documentation states that after version 1.3 of jQuery, checking browser
functions such as alert () might not work correctly in some browsers (such as Internet
Explorer).

21

22

Chapter 1 Getting Started with jQuery

Lines 56—63 demonstrate how to merge arrays and filter the unique elements out of it.
When you run this code, you discover that these functions have side effects. They change
the array that is passed as an argument.

Recipe: Extending Objects by Using extend()

When you are working with objects, sometimes you want to merge two objects into one
or extend one object with functions and properties of the other. Listing 1.14 displays
how jQuery’s extend () function helps to combine two objects.

Listing 1.14 Displaying the Side Effects of Extending Objects

00 <!DOCTYPE html>

01

02 <html lang="en">

03 <head>

04 <title>The extend() function</title>
05 </head>

06 <body>

07

08 <p>First object:</p>

09

10 <p id="object-1"></p>

11

12 <p>Second object:</p>

13

14 <p id="object-2"></p>

15

16 <p>Result object:</p>

17

18 <p id="object-result"></p>

19

20 <button id="extend">Extend</button>

21

22 <button id="extend-new">Extend into empty</button>
23

24 <button id="reset">Reset</button>

25

26 <script src="http://code.jquery.com/jquery-1.7.2.min.js"></script>
27

28 <script>

29 // please externalize this code to an external .js file
30 $(document) .ready (function() {

31
32 var reset,
33 objectl = object2 = objectresult = {};

34

Recipe: Extending Objects by Using extend()

Listing 1.14 Displaying the Side Effects of Extending Objects (Continued)

35 var show = function() {

36 S('#object-1") .html (JSON.stringify (objectl));
37 S('#object-2") .html (JSON.stringify (object2));
38 S ('#object-result') .html (JSON.stringify (objectresult));
39 I

40

41 (reset = function() {

42 objectl = {

43 a: 'original a',

44 b: 'original b',

45 c: 'original c'

46 }i

47 object2 = {

48 c: 'different c',

49 d: 'different d'

50 I

51 objectresult = {};

52 show () ;

53 IDNON

54

55 S('#extend') .click(function() {

56 // has side effects for objectl

57 objectresult = $.extend(objectl, object2);
58 show () ;

59)i

60

61 S ('#extend-new') .click(function() {

62 // without side effects for objectl

63 objectresult = $.extend({}, objectl, object2);
64 show () ;

65)i

66

67 S('#reset').click(function() {

68 reset () ;

69 1)

70

71 });

72 </script>

73 </body>

74 </html>

Compare lines 57 and 63. Line 57 merges the second object into the first object,
overwriting functions and properties that already existed in the first object. Moreover, the
first object is changed by this function.

Chapter 1 Getting Started with jQuery

If you want to have an extended version of objectl without affecting object1 itself,
line 63 demonstrates how to merge both objects into a new object. The resulting new
object has the same functions and properties as the result from line 57.The difference is
that now you have three objects instead of two, and object1l itself is unchanged.

Recipe: Serializing the Data in a Form

If you need the current data of a form before submitting it, you can select all form
elements, iterate over them and read the values. There are shorter ways to achieve the
same result. Listing 1.15 shows two ways to get the current input that was entered into a
form with a single function call.

Listing 1.15 Serializing the Current Form Input into Two Different Formats

00 <!DOCTYPE html>

01

02 <html lang="en">

03 <head>

04 <title>The serialize() and serializeArray() function</title>
05 </head>

06 <body>

07

08

09 <h2>Press the buttons to see the result of two
10 different serialization functions</h2>

11

12 <form action="" method="post">

13 <label for="first_field">First field</label>
14 <input type="text" name="first_field"

15 value="" id="first_field">

16 <label for="second_field">Second field</label>
17 <input type="text" name="second_field"

18 value="" id="second_field">

19 <label for="third_field">Third field</label>
20 <input type="text" name="third_field"

21 value="" id="third_field">

22 <label for="fourth_field">Fourth field</label>
23 <input type="text" name="fourth_field"

24 value="" id="fourth_field">

25 </form>
26

27 <input type="button" name="serialize"

28 value="Serialize" id="serialize">

29 <input type="button" name="serialize-array"

30 value="SerializeArray" id="serialize-array">
31

32 <div id="placeholder"></div>

Recipe: Testing Browsers for Feature Support

Listing 1.15 Serializing the Current Form Input into Two Different Formats (Continued)

33

34 <script src="http://code.jquery.com/jquery-1.7.2.min.js"></script>
35

36 <script>

37 // please externalize this code to an external .js file
38 $(document) .ready (function() {

39

40 S('#serialize').click(function() {

41 $('#placeholder') .html ($('form').serialize());
42 1)

43

44 $('#serialize-array') .click(function() {
45 $('#placeholder') .html (JSON.stringify (
46 $('form').serializeArray()));

47 1)

48

49 });

50 </script>

51 </body>

52 </html>

Line 41 shows the serialize () method to retrieve form content. The result is an
escaped query string that could be directly used in an HTTP call to the server.

Line 46 uses serializearray () for the same purpose. This function is an internal
helper that is called during serialize (). It returns an object with keys and values. If
you want to transform the form content into a different object, the result from
serializeArray () might be easier to use.

Recipe: Testing Browsers for Feature Support

One of the goals of jQuery is to help you to handle browser incompatibilities. Many
small differences between browser vendors and browser versions are covered by jQuery
itself. Still, some differences remain with which jQuery cannot help you. Listing 1.16
shows how jQuery provides properties that indicate whether the current browser
supports certain features and characteristics.

Listing 1.16 Listing All Support Testing Properties

00 <!DOCTYPE html>

01

02 <html lang="en">

03 <head>

04 <title>The support property</title>
05 </head>

(Continues)

25

26

Chapter 1 Getting Started with jQuery

Listing 1.16 Listing All Support Testing Properties (Continued)

06 <body>

07

08 <p>The paragraph under this contains the supported

09 properties of this browser:</p>

10

11 <p id="placeholder"></p>

12

13 <script src="http://code.jquery.com/jquery-1.7.2.min.js"></script>
14

15 <script>

16 // please externalize this code to an external .js file
17 $(document) .ready (function() {

18

19 var result = [];

20 $.each(

21 ('ajax boxModel changeBubbles checkClone checkOn cors cssFloat ' +

22 'hrefNormalized htmlSerialize leadingWhitespace noCloneChecked ' +
23 'noCloneEvent opacity optDisabled optSelected style ' +

24 'submitBubbles tbody').split(' '), function(index, name) {
25 result.push(name + ' = ' + $.support[name] + '
');

26 });

27

28 $('#placeholder') .html (result.join('"));

29

30 });

31 </script>

32 </body>

33 </html>

The ajax property indicates the browser’s support for calls to the server, for example.
And opacity indicates whether you can create a see-through eftect between multiple
elements.

A complete reference of all these properties is beyond the scope of this book. For
more information about them, go to http://api.jquery.com/jQuery.support/. jQuery also
contains a browser property that should not be used. Although support is preferable
over browser, it is still better to avoid using it as long as you can.

Summary

This chapter introduced the basics of using jQuery. It demonstrated how to use the $
variable for other purposes than jQuery. After that, a long list of support functions was
demonstrated. Most of these functions assist in manipulating variables, objects, arrays, and
data elements. Using these functions can help you to keep your code concise.

	Dejonge_FM
	Dejonge_Ch01
	Dejonge_Ch02
	Dejonge_Ch03
	Dejonge_Ch04
	Dejonge_Ch05
	Dejonge_Ch06
	Dejonge_Ch07
	Dejonge_Ch08
	Dejonge_Ch09
	Dejonge_Ch10
	Dejonge_Ch11
	Dejonge_Ch12
	Dejonge_INDEX

