
 LESSON 5
 Jumping into jQuery and

JavaScript Syntax

 What You’ll Learn in This Lesson:

▶ Ways to add jQuery and JavaScript to your web pages

▶ Creating and manipulating arrays of objects

▶ Adding code logic to JavaScript

▶ Implementing JavaScript functions for cleaner code

 Throughout the book, you’ll see several examples of using jQuery and JavaScript to perform

various dynamic tasks. jQuery doesn’t replace JavaScript; it enhances it by providing an abstract

layer to perform certain common tasks, such as finding elements or values, changing attributes

and properties of elements, and interacting with browser events.

 AngularJS uses JavaScript and jQuery syntax to provide its functionality. It is important for you

to understand the jQuery and JavaScript syntax before getting into AngularJS. That is why these

are covered first and AngularJS is covered in later lessons.

 In this lesson, you learn the basic structure and syntax of JavaScript and how to use jQuery to

ease some of the development tasks. The purpose of this lesson is to help you become familiar

with the JavaScript language syntax, which is also the jQuery language syntax.

 Adding jQuery and JavaScript to a Web Page
 Browsers come with JavaScript support already built in to them. That means all you need to do

is add your own JavaScript code to the web page to implement dynamic web pages. jQuery, on

the other hand, is an additional library, and you will need to add the jQuery library to your web

page before adding jQuery scripts.

 Loading the jQuery Library
 Because the jQuery library is a JavaScript script, you use the <script> tag to load the jQuery

into your web page. jQuery can either be downloaded to your code directory and then hosted on

Dayley_Book 1.indb 145Dayley_Book 1.indb 145 7/10/15 12:34 PM7/10/15 12:34 PM

Excerpt from "Sams Teach Yourself AngularJS, JavaScript, and jQuery All in One"
by Brad Dayley and Brendan Dayley (Sams, 2015)

146 LESSON 5: Jumping into jQuery and JavaScript Syntax

your web server, or you can use the hosted versions that are available at jQuery.com. The fol-

lowing statement shows an example of each; the only difference is that the first loads it from the

jQuery CDN source and the second loads it from the web server:

 <script src="http://code.jquery.com/jquery-latest.min.js"></script>

 <script src="includes/js/jquery-latest.min.js"></script>

 CAUTION

 Remember that you need to place the <script> element to load the jQuery library before any script
elements that are using it. Otherwise, those libraries will not be able to link up to the jQuery code.

 The jQuery library downloads can be found at the following location:

 http://jquery.com/download/

 The jQuery library hosted links can be found at the following location:

 http://code.jquery.com/

 Implementing Your Own jQuery and JavaScript
 JQuery code is implemented as part of JavaScript scripts. To add jQuery and JavaScript to your

web pages, first add a <script> tag that loads the jQuery library, and then add your own

 <script> tags with your custom code.

 The JavaScript code can be added inside the <script> element, or the src attribute of the

 <script> element can point to the location of a separate JavaScript document. Either way, the

JavaScript will be loaded in the same manner.

 The following is an example of a pair of <script> statements that load jQuery and then use it.

The document.write() function just writes text directly to the browser to be rendered:

 <script src="http://code.jquery.com/jquery-latest.min.js"></script>

 <script>

 function writeIt(){

 document.write("jQuery Version " + $().jquery + " loaded.");

 }

 </script>

 NOTE

 The <script> tags do not need to be added to the <head> section of the HTML document; they
can also be added in the body. It’s useful to add simple scripts directly inline with the HTML ele-
ments that are consuming them.

Dayley_Book 1.indb 146Dayley_Book 1.indb 146 7/10/15 12:34 PM7/10/15 12:34 PM

Adding jQuery and JavaScript to a Web Page 147

▼

 Implementing JavaScript and jQuery

 Those are the basic steps. Now it is time to try it yourself. Use the following steps to add jQuery
to your project and use it dynamically in a web page:

 1. In Eclipse, create a source folder named lesson05.

 2. In the same folder as the lesson05 folder, add an additional directory called js.

 3. Now create a source file named jquery_version.html in the lesson05 folder.

 4. Add the usual basic elements (html, head, body).

 5. Inside the <head> element, add the following line to load the library you just downloaded:

 06 <script src="https://code.jquery.com/jquery-2.1.3.min.js"></script>

 6. Now you can add your own < script> tag with the following code to print out the jQuery
version to the browser windows:

 07 <script>

 08 function writeIt(){

 09 document.write("jQuery Version " + $().jquery + " loaded.");

 10 }

 11 </script>

 7. To have your script execute when the document is loaded, tie the writeIt() function to
the <body> onload event using the following line:

 13 <body onload="writeIt()">

TRY IT YOURSELF

 Accessing HTML Event Handlers
 So after you add your JavaScript to the web page, how do you get it to execute? The answer is

that you tie it to the browser events. Each time a page or element is loaded, the user moves or

clicks the mouse or types a character, an HTML event is triggered.

 Each supported event is an attribute of the object that is receiving the event. If you set the attri-

bute value to a JavaScript function, the browser will execute your function when the event is

triggered.

 For example, the following will execute the writeIt() function when the body of the HTML

page is loaded:

 <body onload="writeIt()">

Dayley_Book 1.indb 147Dayley_Book 1.indb 147 7/10/15 12:34 PM7/10/15 12:34 PM

148 LESSON 5: Jumping into jQuery and JavaScript Syntax

 Accessing the DOM
 One of the most important aspects of JavaScript, and especially jQuery, is the capability to

access and manipulate the DOM. Accessing the DOM is how you make the web page dynamic

by changing styles, size, position, and values of elements.

▼ 8. Save the file and view it in your web browser at the following location. The output should
be similar to Figure 5.1 :

 http://localhost/lesson06/jquery_version.html

 FIGURE 5.1
 The function writeIt() is executed when the body loads and writes the jQuery version to the browser.

 LISTING 5.1 jquery_version.html Very Basic Example of Loading Using jQuery in

a Web Page to Print Out Its Own Version

 01 <!DOCTYPE html>

 02 <html>

 03 <head>

 04 <title>jQuery Version</title>

 05 <meta charset="utf-8" />

 06 <script src="https://code.jquery.com/jquery-2.1.3.min.js"></script>

 07 <script>

 08 function writeIt(){

 09 document.write("jQuery Version " + $().jquery + " loaded.");

 10 }

 11 </script>

 12 </head>

 13 <body onload="writeIt()">

 14 </body>

 15 </html>

Dayley_Book 1.indb 148Dayley_Book 1.indb 148 7/10/15 12:34 PM7/10/15 12:34 PM

Accessing the DOM 149

 In the following sections, you learn about accessing the DOM through traditional methods via

JavaScript and the much improved methods using jQuery selectors. These sections are a brief

introduction. You will get plenty of practice as the lessons roll on.

 Using Traditional JavaScript to Access the DOM
 Traditionally, JavaScript uses the global document object to access elements in the web page.

The simplest method of accessing an element is to directly refer to it by id . For example, if you

have a paragraph with the id="question" , you can access it via the following JavaScript

 getElementById() function:

 var q = document.getElementById("question");

 ...

 <p id="question">Which method to you prefer?</p>

 Another helpful JavaScript function that you can use to access the DOM elements is

 getElementsByTagName() . This returns a JavaScript array of DOM elements that match the

tag name. For example, to get a list of all the <p> elements, use the following function call:

 var paragraphs = document.getElementsByTagName("p");

 Using jQuery Selectors to Access HTML Elements
 Accessing HTML elements is one of jQuery’s biggest strengths. jQuery uses selectors that are very

similar to CSS selectors to access one or more elements in the DOM; hence the name jQuery.

jQuery returns back either a single element or an array of jQuerified objects. jQuerified means

that additional jQuery functionality has been added to the DOM object, allowing for much

easier manipulation.

 The syntax for using jQuery selectors is $(selector). action () , where selector is replaced

by a valid selector and action is replaced by a jQuerified action attached to the DOM

element(s).

 For example, the following command finds all paragraph elements in the HTML document and

sets the CSS font-weight property to bold :

 $("p").css('font-weight', 'bold');

▼

 Using jQuery and JavaScript to Access DOM Elements

 Now to solidify the concepts, you’ll run through a quick example of accessing and modifying DOM
elements using both jQuery and JavaScript. Use the following steps to build the HTML document
shown in Listing 5.2 :

TRY IT YOURSELF

Dayley_Book 1.indb 149Dayley_Book 1.indb 149 7/10/15 12:34 PM7/10/15 12:34 PM

150 LESSON 5: Jumping into jQuery and JavaScript Syntax

▼ 1. Create a source file named dom_elements.html in the lesson05 folder.

 2. Add the usual basic elements (html, head, body).

 3. Inside the <head> element, add the following line to load the library you just downloaded:

 06 <script src="https://code.jquery.com/jquery-2.1.3.min.js"></script>

 4. Add the following <script> element that accesses the DOM using both the JavaScript and
jQuery methods. Notice that with jQuery, two actions are chained together. The first sets
the CSS font-weight property and the second changes text contained in element. With
JavaScript, you use the getElementById() method, and then you set the innerHTML
property directly in the DOM to change the text displayed in the browser:

 07 <script>

 08 function writeIt(){

 09 $("#heading").css('font-weight', 'bold').html("jQuery");

 10 var q = document.getElementById("question");

 11 q.innerHTML = "I Prefer jQuery!";

 12 }

 13 </script>

 5. To have your script execute when the document is loaded, tie the writeIt() function to
the <body> onload event using the following line:

 15 <body onload="writeIt()">

 6. Add the following <p> elements to the <body> to provide containers for the JavaScript
code to access:

 16 <p id="heading">jQuery or JavaScript</p>

 17 <p id="question">Which method to you prefer?</p>

 7. Save the file and view it in a web browser. The output should be similar to Figure 5.2 .

Content and style
are changed
dynamically

 FIGURE 5.2
 The function writeIt() is executed when the body loads and changes the content and appearance of
the text.

Dayley_Book 1.indb 150Dayley_Book 1.indb 150 7/10/15 12:34 PM7/10/15 12:34 PM

Understanding JavaScript Syntax 151

 Understanding JavaScript Syntax
 Like any other computer language, JavaScript is based on a rigid syntax where specific words

mean different things to the browser as it interprets the script. This section is designed to walk

you through the basics of creating variables, working with data types, and using looping and

functions in JavaScript to manipulate your web pages.

 TIP

 For the simple JavaScript examples in this lesson, you can test them by starting Node.js using the
 node command from a console prompt to bring up the Node.js interpreter. From the interpreter, you
can type in JavaScript code and have it execute as you type each line.

 Creating Variables
 The first place to begin with in JavaScript is variables. Variables are a means to name data so

that you can use that name to temporarily store and access data from your JavaScript files.

 LISTING 5.2 Very Basic Example of Using JavaScript and jQuery to Access DOM

Elements

 01 <!DOCTYPE html>

 02 <html>

 03 <head>

 04 <title>DOM Changes</title>

 05 <meta charset="utf-8" />

 06 <script src="https://code.jquery.com/jquery-2.1.3.min.js"></script>

 07 <script>

 08 function writeIt(){

 09 $("#heading").css('font-weight', 'bold').html("jQuery");

 10 var q = document.getElementById("question");

 11 q.innerHTML = "I Prefer jQuery!";

 12 }

 13 </script>

 14 </head>

 15 <body onload="writeIt()">

 16 <p id="heading">jQuery or JavaScript</p>

 17 <p id="question">Which method do you prefer?</p>

 18 </body>

 19 </html>

▼

Dayley_Book 1.indb 151Dayley_Book 1.indb 151 7/10/15 12:34 PM7/10/15 12:34 PM

152 LESSON 5: Jumping into jQuery and JavaScript Syntax

Variables can point to simple data types, such as numbers or strings, or they can point to more

complex data types, such as objects.

 To define a variable in JavaScript, you must use the var keyword and then give the variable a

name; for example:

 var myData;

 You can also assign a value to the variable in the same line. For example, the following line of

code creates a variable myString and assigns it the value of “Some Text”:

 var myString = "Some Text";

 This works as well as the following:

 var myString;

 myString = "Some Text";

 After you have declared the variable, you can use the name to assign the variable a value and

access the value of the variable. For example, the following code stores a string into the

 myString variable and then uses it when assigning the value to the newString variable:

 var myString = "Some Text";

 var newString = myString + " Some More Text";

 Your variable names should describe the data that is stored in them so that it is easy to use them

later in your program. The only rule for creating variable names is that they must begin with a

letter, $, or _ , and they cannot contain spaces. Also remember that variable names are case sen-

sitive, so using myString is different from MyString .

 Understanding JavaScript Data Types
 JavaScript uses data types to determine how to handle data that is assigned to a variable. The

variable type will determine what operations you can perform on the variable, such as looping

or executing. The following list describes the most common types of variables that we will be

working with through the book:

 ▶ String — Stores character data as a string. The character data is specified by either single

or double quotes. All the data contained in the quotes will be assigned to the string vari-

able. For example:

 var myString = 'Some Text';

 var anotherString = "Some Other Text";

Dayley_Book 1.indb 152Dayley_Book 1.indb 152 7/10/15 12:34 PM7/10/15 12:34 PM

Understanding JavaScript Syntax 153

 ▶ Number — Stores the data as a numerical value. Numbers are useful in counting, calcula-

tions, and comparisons. Some examples are as follows:

 var myInteger = 1;

 var cost = 1.33;

 ▶ Boolean — Stores a single bit that is either true or false. Booleans are often used for flags.

For example, you might set a variable to false at the beginning of some code and then

check it on completion to see whether the code execution hit a certain spot. The following

shows an example of defining a true and a false variable:

 var yes = true;

 var no = false;

 ▶ Array — An indexed array is a series of separate distinct data items all stored under a sin-

gle variable name. Items in the array can be accessed by their zero-based index using the

 [index] . The following is an example of creating a simple array and then accessing the

first element, which is at index 0:

 var arr = ["one", "two", "three"]

 var first = arr[0];

 ▶ Associative Array/Objects— JavaScript does support the concept of an associative array,

meaning accessing the items in the array by a name instead of an index value. However,

a better method is to use an object literal. When you use an object literal, you can access

items in the object using object.property syntax. The following example shows how to

create and access an object literal:

 var obj = {"name":"Brad", "occupation":"Hacker", "age", "Unknown"};

 var name = obj.name;

 ▶ Null — At times, you do not have a value to store in a variable, either because it hasn’t

been created or you are no longer using it. At this time, you can set a variable to null .

That way, you can check the value of the variable in your code and use it only if it is

not null :

 var newVar = null;

 NOTE

 JavaScript is a typeless language, meaning you do not need to tell the browser what data type the
variable is; the interpreter will automatically figure out the correct data type for the variable.

Dayley_Book 1.indb 153Dayley_Book 1.indb 153 7/10/15 12:34 PM7/10/15 12:34 PM

154 LESSON 5: Jumping into jQuery and JavaScript Syntax

 Using Operators
 JavaScript operators provide the capability to alter the value of a variable. You are already

familiar with the = operator because you used it several times in the book already. JavaScript

provides several operators that can be grouped into two types—arithmetic and assignment.

 Arithmetic Operators
 Arithmetic operators are used to perform operations between variable and direct values. Table

 5.1 shows a list of the arithmetic operations along with the results that get applied.

 TABLE 5.1 Table Showing JavaScripts’ Arithmetic Operators as Well as Results

Based on y=4 to Begin With

 Operator Description Example Resulting x Resulting y

 + Addition x=y+5
x=y+"5"

 x="Four"+y+"4"

 9 "45"
 "Four44"

 4
4

 4

 - Subtraction x=y-2 2 4

 ++ Increment x=y++ 4 5

 x=++y 5 5

 -- Decrement x=y-- 4 3

 x=--y 3 3

 * Multiplication x=y*4 16 4

 / Division x=10/y 2.5 4

 % Modulous (remainder of Division) x=y%3 1 4

 TIP

 The + operator can also be used to add strings or strings and numbers together. This allows you to
quickly concatenate strings and add numerical data to output strings. Table 5.1 shows that when
adding a numerical value and a string value, the numerical value is converted to a string, and then
the two strings are concatenated.

 Assignment Operators
 Assignment operators are used to assign a value to a variable. You are probably used to the =

operator, but there are several forms that allow you to manipulate the data as you assign the

value. Table 5.2 shows a list of the assignment operations along with the results that get applied.

Dayley_Book 1.indb 154Dayley_Book 1.indb 154 7/10/15 12:34 PM7/10/15 12:34 PM

Understanding JavaScript Syntax 155

 TABLE 5.2 JavaScripts’ Assignment Operators as Well as Results Based on x=10

to Begin With

 Operator Example Equivalent Arithmetic Operators Resulting x

 = x=5 x=5 5

 += x+=5 x=x+5 15

 -= x-=5 x=x-5 5

 = x=5 x=x*5 50

 /= x/=5 x=x/5 2

 %= x%=5 x=x%5 0

 Applying Comparison and Conditional Operators
 Conditionals are a way to apply logic to your applications so that certain code will be executed

only under the correct conditions. This is done by applying comparison logic to variable values.

The following sections describe the comparisons available in JavaScript and how to apply them

in conditional statements.

 Comparison Operators
 A comparison operator evaluates two pieces of data and returns true if the evaluation is correct

or false if the evaluation is not correct. Comparison operators compare the value on the left of

the operator against the value on the right.

 The simplest way to help you understand comparisons is to provide a list with some examples.

 Table 5.3 shows a list of the comparison operators along with some examples.

 TABLE 5.3 JavaScripts’ Comparison Operators as Well as Results Based on x=10

to Begin With

 Operator Example Example Result

 == Is equal to (value only) x==8 false

 x==10 true

 === Both value and type are equal x===10 true

 x==="10" false

 != Is not equal x!=5 true

 !== Both value and type are not equal x!=="10" true

 x!==10 false

 > Is greater than x>5 true

Dayley_Book 1.indb 155Dayley_Book 1.indb 155 7/10/15 12:34 PM7/10/15 12:34 PM

156 LESSON 5: Jumping into jQuery and JavaScript Syntax

 Operator Example Example Result

 >= Is greater than or equal to x>=10 true

 < Is less than x<5 false

 <= Is less than or equal to x<=10 true

 You can chain multiple comparisons together using logical operators. Table 5.4 shows a list of

the logical operators and how to use them to chain comparisons together.

 TABLE 5.4 JavaScripts’ Comparison Operators as Well as Results Based on x=10

and y=5 to Begin With

 Operator Description Example Result

 && and (x==10 && y==5) (x==10 && y>x) true
 false

 || or (x>=10 || y>x) (x<10 && y>x) true
 false

 ! not !(x==y) !(x>y) true
 false

 mix (x>=10 && y<x || x==y) ((x<y || x>=10) &&
y>=5) (!(x==y) && y>=10)

 true
 true
 false

 If

 An if statement enables you to separate code execution based on the evaluation of a compari-

son. The syntax is shown in the following lines of code where the conditional operators are in ()

parenthesis and the code to execute if the conditional evaluates to true is in {} brackets:

 if(x==5){

 do_something();

 }

 In addition to executing code only within the if statement block, you can specify an else block

that will get executed only if the condition is false. For example:

 if(x==5){

 do_something();

 } else {

 do_something_else();

 }

Dayley_Book 1.indb 156Dayley_Book 1.indb 156 7/10/15 12:34 PM7/10/15 12:34 PM

Understanding JavaScript Syntax 157

 You can also chain if statements together. To do this, add a conditional statement along with

an else statement. For example:

 if(x<5){

 do_something();

 } else if(x<10) {

 do_something_else();

 } else {

 do_nothing();

 }

 switch

 Another type of conditional logic is the switch statement. The switch statement allows you

to evaluate an expression once and then, based on the value, execute one of many sections of

code.

 The syntax for the switch statement is the following:

 switch(expression){

 case value:

 <code to execute>

 break;

 case value2:

 <code to execute>

 break;

 default:

 <code to execute if not value or value2>

 }

 This is what is happening. The switch statement will evaluate the expression entirely and get a

value. The value may be a string, a number, a Boolean, or even an object. The switch value is

then compared to each value specified by the case statement. If the value matches, the code in

the case statement is executed. If no values match, the default code is executed.

 NOTE

 Typically, each case statement will include a break command at the end to signal a break out of the
 switch statement. If no break is found, code execution will continue with the next case statement.

Dayley_Book 1.indb 157Dayley_Book 1.indb 157 7/10/15 12:34 PM7/10/15 12:34 PM

158 LESSON 5: Jumping into jQuery and JavaScript Syntax

▼

 Applying If Conditional Logic in JavaScript

 To help you solidify using JavaScript conditional logic, use the following steps to build conditional
logic into the JavaScript for a dynamic web page. The final version of the HTML document is
shown in Listing 5.3 :

 1. Create a source file named if_logic.html in the lesson05 folder.

 2. Create a folder under lesson05 named images.

 3. Add your own images for day.png and night.png to the ./images folder in your project or
download the ones from the book’s website.

 4. Add the usual basic elements (html, head, body).

 5. Add the following <script> element that gets the lesson value using the
 Date().getLessons() JavaScript code. The code uses if statements to determine
the time of day and does two things: it writes a greeting onto the screen and sets the
value of the timeOfDay variable:

 06 <script>

 07 function writeIt(){

 08 var lesson = new Date().getLessons();

 09 var timeOfDay;

 10 if(lesson>=7 && lesson<12){

 11 document.write("Good Morning!");

 12 timeOfDay="morning";

 13 } else if(lesson>=12 && lesson<18) {

 14 document.write("Good Day!");

 15 timeOfDay="day";

 16 } else {

 17 document.write("Good Night!");

 18 timeOfDay="night";

 19 }

 32 }

 33 </script>

 6. Now add the following switch statement that uses the value of timeOfDay to determine
which image to display in the web page:

 20 switch(timeOfDay){

 21 case "morning":

 22 case "day":

 23 document.write("");

 24 break;

 25 case "night":

 26 document.write("");

 27 break;

TRY IT YOURSELF

Dayley_Book 1.indb 158Dayley_Book 1.indb 158 7/10/15 12:34 PM7/10/15 12:34 PM

Understanding JavaScript Syntax 159

▼

 28 default:

 29 document.write("");

 30 }

 7. Save the file and view it in a web browser. The output should be similar to Figure 5.3 ,
depending on what time of day it is.

 FIGURE 5.3
 The function writeIt() is executed when the body loads and changes the greeting and image displayed on
the web page.

 LISTING 5.3 if_logic.html Simple Example of Using Conditional Logic Inside

JavaScript

 01 <!DOCTYPE html>

 02 <html>

 03 <head>

 04 <title>If Logic</title>

 05 <meta charset="utf-8" />

 06 <script>

 07 function writeIt(){

 08 var hour = new Date().getHours();

 09 var timeOfDay;

 10 if(hour>=7 && hour<12){

 11 document.write("Good Morning!");

 12 timeOfDay="morning";

TRY IT YOURSELF

Dayley_Book 1.indb 159Dayley_Book 1.indb 159 7/10/15 12:34 PM7/10/15 12:34 PM

160 LESSON 5: Jumping into jQuery and JavaScript Syntax

 Implementing Looping
 Looping is a means to execute the same segment of code multiple times. This is extremely use-

ful when you need to perform the same tasks on a set of DOM objects, or if you are dynamically

creating a list of items.

 JavaScript provides functionality to perform for and while loops. The following sections

describe how to implement loops in your JavaScript.

 while Loops
 The most basic type of looping in JavaScript is the while loop. A while loop tests an expression

and continues to execute the code contained in its {} brackets until the expression evaluates to

false.

 For example, the following while loop executes until the value of i is equal to 5:

 var i = 1;

 while (i<5){

▼ 13 } else if(hour>=12 && hour<18) {

 14 document.write("Good Day!");

 15 timeOfDay="day";

 16 } else {

 17 document.write("Good Night!");

 18 timeOfDay="night";

 19 }

 20 switch(timeOfDay){

 21 case "morning":

 22 case "day":

 23 document.write("");

 24 break;

 25 case "night":

 26 document.write("");

 27 break;

 28 default:

 29 document.write("");

 30 }

 31 }

 32 </script>

 33 </head>

 34 <body onload="writeIt()">

 35 </body>

 36 </html>

Dayley_Book 1.indb 160Dayley_Book 1.indb 160 7/10/15 12:34 PM7/10/15 12:34 PM

Understanding JavaScript Syntax 161

 document.write("Iteration " + i + "
");

 i++;

 }

 The resulting output to the browser is as follows:

 Iteration 1

 Iteration 2

 Iteration 3

 Iteration 4

 do/while Loops
 Another type of while loop is the do / while loop. This is useful if you always want to execute

the code in the loop at least once and the expression cannot be tested until the code has

executed at least once.

 For example, the following do / while loop executes until the value of day is equal to

Wednesday:

 var days = ["Monday", "Tuesday", "Wednesday", "Thursday", "Friday"];

 var i=0;

 do{

 var day=days[i++];

 document.write("It's " + day + "
");

 } while (day != "Wednesday");

 The resulting output to the browser is as follows:

 It's Monday

 It's Tuesday

 It's Wednesday

 for Loops
 The JavaScript for loop allows you to execute code a specific number of times by using a for

statement that combines three statements into one using the following syntax:

 for (statement 1; statement 2; statement 3;){

 code to be executed;

 }

 The for statement uses those three statements as follows when executing the loop:

 ▶ statement 1— Executed before the loop begins and not again. This is used to initialize vari-

ables that will be used in the loop as conditionals.

 ▶ statement 2— Expression that is evaluated before each iteration of the loop. If the expres-

sion evaluates to true, the loop is executed; otherwise, the for loop execution ends.

Dayley_Book 1.indb 161Dayley_Book 1.indb 161 7/10/15 12:34 PM7/10/15 12:34 PM

162 LESSON 5: Jumping into jQuery and JavaScript Syntax

 ▶ statement 3— Executed each iteration after the code in the loop has executed. This is typi-

cally used to increment a counter that is used in statement 2.

 To illustrate a for loop, check out the following example. The example not only illustrates a

basic for loop, it also illustrates the capability to nest one loop inside another:

 for (var x=1; x<=3; x++){

 for (var y=1; y<=3; y++){

 document.write(x + " X " + y + " = " + (x*y) + "
");

 }

 }

 The resulting output to the web browser is as follows:

 1 X 1 = 1

 1 X 2 = 2

 1 X 3 = 3

 2 X 1 = 2

 2 X 2 = 4

 2 X 3 = 6

 3 X 1 = 3

 3 X 2 = 6

 3 X 3 = 9

 for/in Loops
 Another type of for loop is the for / in loop. The for / in loop executes on any data type that can

be iterated on. For the most part, you will use the for / in loop on arrays and objects. The follow-

ing example illustrates the syntax and behavior of the for / in loop on a simple array:

 var days = ["Monday", "Tuesday", "Wednesday", "Thursday", "Friday"];

 for (var idx in days){

 document.write("It's " + days[idx] + "
");

 }

 Notice that the variable idx is adjusted each iteration through the loop from the beginning

array index to the last. The resulting output is as follows:

 It's Monday

 It's Tuesday

 It's Wednesday

 It's Thursday

 It's Friday

Dayley_Book 1.indb 162Dayley_Book 1.indb 162 7/10/15 12:34 PM7/10/15 12:34 PM

Understanding JavaScript Syntax 163

 Interrupting Loops
 When working with loops, at times you need to interrupt the execution of code inside the code

itself without waiting for the next iteration. There are two ways to do this using the break and

 continue keywords.

 The break keyword stops execution of the for or while loop completely. The continue key-

word, on the other hand, stops execution of the code inside the loop and continues on with the

next iteration. Consider the following examples:

 Using a break if the day is Wednesday :

 var days = ["Monday", "Tuesday", "Wednesday", "Thursday", "Friday"];

 for (var idx in days){

 if (days[idx] == "Wednesday")

 break;

 document.write("It's " + days[idx] + "
");

 }

 When the value is Wednesday , loop execution stops completely:

 It's Monday

 It's Tuesday

 Using a continue if the day is Wednesday :

 var days = ["Monday", "Tuesday", "Wednesday", "Thursday", "Friday"];

 for (var idx in days){

 if (days[idx] == "Wednesday")

 continue;

 document.write("It's " + days[idx] + "
");

 }

 Notice that the write is not executed for Wednesday because of the continue; however, the loop

execution did complete:

 It's Monday

 It's Tuesday

 It's Thursday

 It's Friday

 Creating Functions
 One of the most important parts of JavaScript is making code that is reusable by other code. To

do this, you combine your code into functions that perform specific tasks. A function is a series

of code statements combined in a single block and given a name. The code in the block can then

be executed by referencing that name.

Dayley_Book 1.indb 163Dayley_Book 1.indb 163 7/10/15 12:34 PM7/10/15 12:34 PM

164 LESSON 5: Jumping into jQuery and JavaScript Syntax

 Defining Functions
 Functions are defined using the keyword function followed by a function name that describes

the use of the function, list of zero or more arguments in () parentheses, and a block of one or

more code statements in {} brackets. For example, the following is a function definition that

writes “Hello World” to the browser:

 function myFunction(){

 document.write("Hello World");

 }

 To execute the code in myFunction() , all you need to do is add the following line to the main

JavaScript or inside another function:

 myFunction();

 Passing Variables to Functions
 Frequently, you will need to pass specific values to functions that they will use when executing

their code. Values are passed in comma-delimited form to the function. The function definition

will need a list of variable names in the () parentheses that match the number being passed in.

For example, the following function accepts two arguments, a name and city , and uses them to

build the output string:

 function greeting(name, city){

 document.write("Hello " + name);

 document.write(". How is the weather in " + city);

 }

 To call the greeting() function, we need to pass in a name value and a city value. The value

can be a direct value or a previously defined variable. To illustrate this, the following code will

execute the greeting() function with a name variable and a direct string for the city :

 var name = "Brad";

 greeting(name, "Florence");

 Returning Values from Functions
 Often, functions will need to return a value to the calling code. Adding a return keyword fol-

lowed by a variable or value will return that value from the function. For example, the following

code calls a function to format a string, assigns the value returned from the function to a vari-

able, and then writes the value to the browser:

 function formatGreeting(name, city){

 var retStr = "";

 retStr += "Hello " + name + "
";

 retStr += "Welcome to " + city + "!";

 return retStr;

 }

Dayley_Book 1.indb 164Dayley_Book 1.indb 164 7/10/15 12:34 PM7/10/15 12:34 PM

Understanding JavaScript Syntax 165

▼

 Creating JavaScript Functions

 To help solidify functions, use the following steps to integrate some functions into a JavaScript
application. The following steps take you through the process of creating a function, calling it to
execute code, and then handling the results returned:

 1. Create a source file named js_functions.html in the lesson05 folder.

 2. Add the usual basic elements (html, head, body).

 3. Add a <script> tag to the <head> element to house the JavaScript.

 4. Insert the following object literal definition at the beginning of the script. The object will
have planet names for attributes, and each hero name is a reference to an array of villains:

 07 var superData = {"Super Man":["Lex Luther"],

 08 "Bat Man":["Joker", "Riddler",],

 09 "Spider Man":["Green Goblin",

 10 "Vulture", "Carnage"],

 11 "Thor":["Loki", "Frost Giants"]};

 5. Add the following function that will be called by the onload event. In this function, you use
a nested for / in loop to iterate through the superData object attributes. The outer loop
gets the hero name and the inner loop loops through the index of the villains array:

 12 function writeIt(){

 13 for (hero in superData){

 14 var villains = superData[hero];

 15 for (villainIdx in villains){

 16 var villain = villains[villainIdx];

 17 var listItem = makeListItem(hero, villain);

 18 document.write(listItem);

TRY IT YOURSELF

 var greeting = formatGreeting("Brad", "Rome");

 document.write(greeting);

 You can include more than one return statement in the function. When the function encoun-

ters a return statement, code execution of the function is stopped immediately. If the return

statement contains a value to return, that value is returned. The following example shows a

function that tests the input and returns immediately if it is zero:

 function myFunc(value){

 if (value == 0)

 return;

 code_to_execute_if_value_nonzero;

 }

Dayley_Book 1.indb 165Dayley_Book 1.indb 165 7/10/15 12:34 PM7/10/15 12:34 PM

166 LESSON 5: Jumping into jQuery and JavaScript Syntax

▼ 19 }

 20 }

 21 }

 6. Notice that on line 16 of the writeIt() function is a call to makeListItem() . That func-
tion needs to return a value that can be used in line 17 to write to the document. Add the
following code to create the function. The function takes two arguments: a name and a
 value , then generates an HTML string to create a element and returns the string:

 22 function makeListItem(name, value){

 23 var itemStr = "" + name + ": " + value + "";

 24 return itemStr;

 25 }

 7. Save the file and open it in a web browser. You should see the results shown in Figure
 5.4 . You have just created two JavaScript functions: one that takes no arguments and
does not return a value and the other that takes two arguments and returns a formatted
HTML string containing the argument strings.

 FIGURE 5.4
 The function writeIt() is executed, which iterates through the moonData object and makes calls to the
 makeListItem() function to format the planet and moon names as an HTML element.

 LISTING 5.4 js_functions.html Simple Example of JavaScript Functions

 01 <!DOCTYPE html>

 02 <html>

 03 <head>

 04 <title>JavaScript Functions</title>

 05 <meta charset="utf-8" />

 06 <script>

 07 var superData = {"Super Man":["Lex Luther"],

 08 "Bat Man":["Joker", "Riddler"],

 09 "Spider Man":["Green Goblin",

Dayley_Book 1.indb 166Dayley_Book 1.indb 166 7/10/15 12:34 PM7/10/15 12:34 PM

Understanding JavaScript Syntax 167

 Understanding Variable Scope
 After you start adding conditions, functions, and loops to your JavaScript applications, you need

to understand variable scoping. Variable scope is simply this: “what is the value of a specific

variable name at the current line of code being executed.”

 JavaScript enables you to define both a global and a local version of the variable. The global

version is defined in the main JavaScript, and local versions are defined inside functions. When

you define a local version in a function, a new variable is created in memory. Within that func-

tion, you will be referencing the local version. Outside that function, you will be referencing the

global version.

 To understand variable scoping a bit better, consider the following code:

 01 <script>

 02 var myVar = 1;

 03 function writeIt(){

 04 var myVar = 2;

 05 document.write(myVar);

 06 writeMore();

 07 }

 08 function writeMore(){

 10 "Vulture", "Carnage"],

 11 "Thor":["Loki", "Frost Giants"]};

 12 function writeIt(){

 13 for (hero in superData){

 14 var villains = superData[hero];

 15 for (villainIdx in villains){

 16 var villain = villains[villainIdx];

 17 var listItem = makeListItem(hero, villain);

 18 document.write(listItem);

 19 }

 20 }

 21 }

 22 function makeListItem(name, value){

 23 var itemStr = "" + name + ": " + value + "";

 24 return itemStr;

 25 }

 26 </script>

 27 </head>

 28 <body onload="writeIt()">

 29 </body>

 30 </html>

▼

Dayley_Book 1.indb 167Dayley_Book 1.indb 167 7/10/15 12:34 PM7/10/15 12:34 PM

168 LESSON 5: Jumping into jQuery and JavaScript Syntax

 09 document.write(myVar);

 10 }

 11 </script>

 The global variable myVar is defined on line 2. Then on line 4, a local version is defined within

the writeIt() function. So, line 5 will write to the document. Then in line 6, writeMore()

is called. Because there is no local version of myVar defined in writeMore() , the value of the

global myVar is written in line 9.

 Adding Error Handling
 An important part of JavaScript coding is adding error handling for instances where there may

be problems. By default, if a code exception occurs because of a problem in your JavaScript, the

script fails and does not finish loading. This is not usually the desired behavior.

 Try/Catch Blocks
 To prevent your code from totally bombing out, use try / catch blocks that can handle problems

inside your code. If JavaScript encounters an error when executing code in a try / catch block, it

will jump down and execute the catch portion instead of stopping the entire script. If no error

occurs, all of the try will be executed and none of the catch .

 For example, the following try / catch block will execute any code that replaces your_code_

here . If an error occurs executing that code, the error message followed by the string “: hap-

pened when loading the script” will be written to the document:

 try {

 your_code_here

 } catch (err) {

 document.write(err.message + ": happened when loading the script");

 }

 Throw Your Own Errors
 You can also throw your own errors using a throw statement. The following code illustrates how

to add throws to a function to throw an error, even if a script error does not occur:

 01 <script>

 02 function sqrRoot(x) {

 03 try {

 04 if(x=="") throw "Can't Square Root Nothing";

 05 if(isNaN(x)) throw "Can't Square Root Strings";

 06 if(x<0) throw "Sorry No Imagination";

 07 return "sqrt("+x+") = " + Math.sqrt(x);

 08 } catch(err){

 09 return err;

 10 }

Dayley_Book 1.indb 168Dayley_Book 1.indb 168 7/10/15 12:34 PM7/10/15 12:34 PM

Summary 169

 11 }

 12 function writeIt(){

 13 document.write(sqrRoot("four") + "
");

 14 document.write(sqrRoot("") + "
");

 15 document.write(sqrRoot("4") + "
");

 16 document.write(sqrRoot("-4") + "
");

 17 }

 18 </script>

 The function sqrRoot() accepts a single argument x . It then tests x to verify that it is a positive

number and returns a string with the square root of x . If x is not a positive number, the appro-

priate error is thrown and returned to writeIt() .

 Using finally
 Another valuable tool in exception handling is the finally keyword. A finally keyword

can be added to the end of a try / catch block. After the try / catch blocks are executed, the

 finally block is always executed. It doesn’t matter if an error occurs and is caught or if the try

block is fully executed.

 Following is an example of using a finally block inside a web page:

 function testTryCatch(value){

 try {

 if (value < 0){

 throw "too small";

 } else if (value > 10){

 throw "too big";

 }

 your_code_here

 } catch (err) {

 document.write("The number was " + err.message");

 } finally {

 document.write("This is always written.");

 }

 }

 Summary
 In this lesson, you learned the basics of adding jQuery and JavaScript to web pages. The basic

data types that are used in JavaScript and, consequently, jQuery were described. You learned

some of the basic syntax of applying conditional logic to JavaScript applications. You also

learned how to compartmentalize your JavaScript applications into functions that can be reused

in other locations. Finally, you learned some ways to handle JavaScript errors in your script

before the browser receives an exception.

Dayley_Book 1.indb 169Dayley_Book 1.indb 169 7/10/15 12:34 PM7/10/15 12:34 PM

170 LESSON 5: Jumping into jQuery and JavaScript Syntax

 Q&A
 Q. When should you use a regular expression in string operations?

 A. That depends on your understanding of regular expressions. Those who use regular expres-
sions frequently and understand the syntax well would almost always rather use a regular
expression because they are so versatile. If you are not familiar with regular expressions, it
takes time to figure out the syntax, and so you will want to use them only when you need
to. The bottom line is that if you need to manipulate strings frequently, it is absolutely
worth it to learn regular expressions.

 Q. Can I load more than one version of jQuery at a time?

 A. Sure, but there really isn’t a valid reason to do that. The one that gets loaded last will over-
write the functionality of the previous one. Any functions from the first one that were not
overwritten may be completely unpredictable because of the mismatch in libraries. The best
bet is to develop and test against a specific version and update to a newer version only
when there is added functionality that you want to add to your web page.

 Workshop
 The workshop consists of a set of questions and answers designed to solidify your understanding
of the material covered in this lesson. Try to answer the questions before looking at the answers.

 Quiz
 1. What is the difference between == and === in JavaScript?

 2. What is the difference between the break and continue keywords?

 3. When should you use a finally block?

 4. What is the resulting value when you add a string “1” to a number 1, (“1”+1)?

 Quiz Answers
 1. == compares only the relative value; === compares the value and the type.

 2. break will stop executing the loop entirely, whereas continue will only stop executing the
current iteration and then move on to the next.

 3. When you have code that needs to be executed even if a problem occurs in the try block.

 4. The string “11” because the number is converted to a string and then concatenated.

Dayley_Book 1.indb 170Dayley_Book 1.indb 170 7/10/15 12:34 PM7/10/15 12:34 PM

Workshop 171

 Exercises
 1. Open js_functions.html and modify it to create a table instead of a list. You will need to

add code to the writeIt() function that writes the <table> open tag before iterating
through the planets and then the closing tag after iterating through the planets. Then
modify the makeListItem() function to return a string in the form of:

 <tr><td>planent</td><td>moon</td></tr>

 2. Modify if_logic.html to include some additional times with different messages and images.
For example, between 8 and 9, you could add the message “go to work” with a car icon,
and between 5 and 6, you could add the message “time to go home” with a home icon.
You will need to add some additional cases to the switch statement and set the
 timeOfDay value accordingly.

Dayley_Book 1.indb 171Dayley_Book 1.indb 171 7/10/15 12:34 PM7/10/15 12:34 PM

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on '[RRD Book 20050524\(1\).joboptions2]'] Use these settings to create PDF documents for RR Donnelley Book plants. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug true
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

