Coding Challenge Overview:
Portable JavaScript Console

The goal of this project is to create an easy way for the user to pop up a dialog box with an interactive JavaScript console,
similar to the console in Firebug or the Google Chrome Developer tools, but that works identically in any browser. Simply
loading the appropriate JavaScript file in a page that uses jQuery Ul should result in a button being automatically inserted
at the bottom of the page, as below.

Open Console

Pressing the button should result in a jQuery Ul Dialog box that lets the user interactively evaluate JavaScript and jQuery
expressions and statements, as below.

[RandomjQueryUiage x|\

m H

€ locathost S A BB =~
Random jQuery UI Page

Dialog Box Samples

Simple Dialoa Animated Dialoa Modal Dialoa Modal Dialoa with Buttons
JavaScript Console

> Math.random();
[0.07514366719687426

> function square(x) { return(x*x); }
undefined

> square(Math.random());

Ai: 10.000007791089750203008

|square (Math.random()) ;

Run | Clear Enable Profiling
)

o e corwenion com ISt nd Query s

Open Console

There should be an option that lets the user turn on performance profiling, where the elapsed time for each entered
command is shown. There should also be a logging function that prints simple Strings to the console output window.

JavaScript Console *

> function sumRandoms(n) { Console.log("Summing up " + n + " random numbers.");
var sum = 0; for(var i=0; i<n; i++) { sum = sum + Math.random();} return(sum); }
undefined

Now tracking elapsed time

> sumRandoms(1000000);

Summing up 1000000 random numbers.

500257.6034955272

Elapsed time: 0.013 seconds

sumRandoms (1000000) ;

Run Clear Disable Profiling

The code should assume that jQuery and jQuery Ul have already been loaded in the page, but make no other assumptions
about the JavaScript or HTML in the page. It should work identically in any browser that supports jQuery and jQuery Ul.

Coding Challenge Requirements:
Portable JavaScript Console

10.

11.

12.

Do not use HTML in the body. The entire process should be accomplished simply by loading a specified
JavaScript file in any otherwise normal page that uses jQuery Ul. For the console itself, there should be no no
markup of any sort in the body, and nothing other than a single <script> tag in the head. You may, however,
assume that jQuery and jQuery Ul have already been loaded.
Avoid excessive HTML inside JavaScript strings. Instead, use Ajax to load the button and other elements from
a file that is inside the folder containing your JavaScript file. You may assume that you know the location of the
folder containing your code, but even better would be to define the location in a variable that can be overriden.
Use jQuery Ul styles. All buttons, dialogs, and other elements used in the console should use the current jQuery
Ul theme.
Create style sheet links dynamically. Do not require a <link...> element in the head for the styles specific to the
console. Instead, insert the <link> dynamically. Hint: use $("head").append.
Use the global context. That is, you should be able to enter “var x = 5;” in the console, then later enter “x” and
get back 5. Hint: use window.eval instead of eval (and Google for “eval global scope” for why this is even an
issue). Note that $.globalEval in jQuery does not work for this problem, since it does not return a value.
Handle JavaScript errors. If the end user enters illegal JavaScript, your console output window should show the
error message. Hint: research try/catch blocks in JavaScript.

> Math.random()

0.08269640119232557

> Math.randoom()
ypeError: Math.randoom is not a function

Prevent name conflicts. Define all your functions and variables in a namespace.
Handle < and > in the output. Do not fail with JavaScript commands that contain < or >. Hint: see
string.replace.

>var x = 5;

undefined

> if (x < 10) { Console.log("yes"); }
yes

undefined

Scroll appropriately. If the user enters many commands in the input window, be sure the output window shows
the latest one. Hint: research the scrollTop() function and the scrollHeight property.

Show times in seconds. If elapsed time profile is enabled, display the elapsed time in seconds. Hint: research
Date.now() or [better!] performance.now().

Maximize the width of the dialog. Size it relative to the current browser width (e.g., 90%). Hint: research how to
determine the browser width.

Think of interesting new features and try them out. Be creative.

